Production and cutting of

AUTOMOTIVE LEATHER
Preface

Since 2013, the global tanning industry has experienced a strong increase in demand for finished leather for automotive interiors. Automotive has long been a valuable segment for leather producers, but its importance has grown substantially, partly because of a decline in demand from other segments, most notably mainstream footwear, in the course of this decade.

Automotive original equipment manufacturers (OEMs) have the reputation of being demanding customers, insisting that all suppliers make important progress in operational efficiency year after year, passing a proportion of the savings on. They encourage lean thinking and supply chain excellence and insist that suppliers, including tanners, capture and share important data. All suppliers have to work hard to keep these customers happy.

Automotive companies, especially in the premium and luxury segments, are consumers of a high volume of the best-quality cattle hides in the market and have played an increasingly important role in keeping the leather pipeline flowing. Automotive uses up a share of between 15% and 18% of the total number of cattle hides being processed at the moment, but this is expected to rise to at least 25% by 2020. Just as their demand for cattle hides seems likely to go up, automotive OEMs are certain to demand more efficiency and more information surrounding the production of automotive leather. Advanced technology, including automated cutting systems, can help tanners achieve the necessary operational improvements and generate the necessary data at the same time. However, this requires not just an investment in the technology, but often quite profound changes to the way the whole company works. Change is always difficult, but many of the technology companies now appreciate the transition businesses need to make to gain full benefit from the solutions they offer; the technology companies also want to provide value for money and pledge to help tanners make the changes in organisation and in culture required to use the technology well. There is an invitation to tanners to become more fully players in the twenty-first-century, digital economy.
Contents

Key findings 07

Situation of the leather industry in general 08

Situation specifically in automotive tanning 09

Importance of the cutting process 10

Reasons to shift to automation 11

Change management as a key to success 14
Key findings

Automotive production is on the rise, with China and other rapidly developing economies leading growth, along with resurgence in the US. Also on the increase is the demand among automotive original equipment manufacturers (OEMs) for leather in their car interiors.

Tanners view this as good news, but do not find every aspect of the supplier-customer relationships in automotive easy. They are mostly in direct contact with the consumer-facing automotive brands, the OEMs, when determining how much leather they will provide and at what levels of quality. However, tanners often have to ship their finished leather or the cut parts they have produced in their in-house cutting plants to specialist tier-one seat suppliers rather than to the OEMs directly. This produces natural tension as many of the tier-ones can also supply a cutting or cut-and-sew service and view tanners as rivals. In addition, one major tier-one made a substantial investment in leather production in 2014, spreading the waves of tension to all points of the automotive leather supply chain.

Advanced automated cutting systems can help tanners by allowing them to achieve overall efficiency gains in their operations, meet customer requirements more fully and, even if they make only a small margin on cutting, cement their core business of convincing OEMs to include leather in their design specifications for new and existing models.

These technologies are a means of adapting much more quickly to changes that OEMs are making to their offerings as they tailor their products to the needs and tastes of different markets around the world. For some tanners, computerised cutting machines would make it possible for them to start running a cutting operation for the first time, while for others the higher yield rate and lower volumes of waste that the technology promises could give them the confidence to move upmarket and begin working with higher-quality hides.

High-end technology is also an important source of data, which gives OEMs in-depth insight into leather-producing operations, but also provides the tanners with potentially crucial evidence and support if disputes arise with OEMs or, more likely, their tier-one seating suppliers.

Tanners at the moment seem to want to keep a range of cutting systems. They recognise that automation and digital systems offer many advantages, but still require convincing that they should carry out all cutting operations in this way.
Consumers want authenticity. This ought to be good news for leather.

Brands for whom high-quality leather is integral to the story they tell consumers, such as those who make and sell premium accessories, footwear, furniture and cars, are little affected by this. A narrative that is beginning to become louder is that consumers want authenticity. This means they want manufacturers, brands and retailers to be honest and sincere in sharing information about what materials their products contain, where the products and materials are made, how and by whom. This ought to be good news for leather, but only if tanners continue to innovate, to emphasise the naturalness of the product and to offer all the information their customers and the end consumer might want to have on raw material traceability, chemical use, environmental management and corporate social responsibility. This is a world in which nothing can be hidden, and the only way to be a success is to tell the truth about yourself and your products and have nothing to hide. In commodity areas of each market, manufacturers, brands and consumers are likely to compromise on any or all of the above points for the sake of price, sometimes only changing their practices when forced to by law or by negative publicity. This necessarily leads to a discussion about whether suppliers of leather might want to have on raw material traceability, chemical use, environmental management and corporate social responsibility. This is a world in which nothing can be hidden, and the only way to be a success is to tell the truth about yourself and your products and have nothing to hide. In commodity areas of each market, manufacturers, brands and consumers are likely to compromise on any or all of the above points for the sake of price, sometimes only changing their practices when forced to by law or by negative publicity. This necessarily leads to a discussion about whether suppliers of leather should be trying to compete as a commodity against other commodities in the first place. Instead, successful tanning groups may prefer to continue to invest in making the finest leather they possibly can, as efficiently as they can, but with pride in what they produce, charging a fair price for it.
SITUATION SPECIFICALLY IN AUTOMOTIVE TANNING

In the automotive leather segment, things have gone very differently since 2012. Car sales have increased, thanks mainly to the numbers of middle-class and wealthy consumers in China and other fast developing economies purchasing cars now, and thanks also to a rebound in the US market. Projections are that original equipment manufacturers (OEMs) could sell a combined total of 30 million vehicles in China by 2020 as the middle class continues to grow there (Figure 1).

Some interesting numbers are that the interior of each vehicle produced by super-luxury OEM Rolls-Royce contains at least 10 whole cattle hides, with some models consuming 15. BMW is now making more than 2 million cars per year; not all of these have all-leather interiors, but it’s still an in-demand material at the group. For illustration, at the International Leather Forum in Paris in 2007, BMW Group confirmed that, at that time, it was using 11,000 hides every day. But this remains a fast-moving and unpredictable part of the business and tanners know they have to remain creative and responsive. There is great pressure on most OEMs because of the high levels of competition they face and this, in itself, can mean sharp challenges and plenty of pain-points for tanners.

Their rivals, the companies making fabric or plastic for car interiors, work hard to make their materials attractive to the OEMs and their specialist tier-one suppliers, in performance as well as price. Even so, there is confidence among tanners that leather can become an even stronger expression of differentiation than it is now, especially, as the above examples show, in the high-end segments of automotive, where many car companies choose leather precisely because it’s expensive. They pay the tanners more than they would pay to providers of alternative materials for their car interiors, but they are good at passing the extra cost on to consumers, with healthy mark-ups. Inspired by this, an increasingly wide range of car brands are offering leather as a trim option at least.

Consensus is that demand for new cars will remain high, at least in the near term, which ought to be good news for companies helping supply leather for the interiors of at least some of these vehicles. Nevertheless, it’s important to point out that, in supply chain terms, this is a particularly complex and demanding eco-system, one in which the best operators can thrive, but which will prove extremely challenging for inefficient suppliers. Many car designers find leather to be an interesting material to work with and one that allows them to express their creativity more fully than, say, polyurethane or fabric.

Demand for leather for car interiors, for a range of reasons, has also increased. Some commentators are convinced that, in the face of a decline in demand in footwear, the automotive segment has been the salvation of the global leather industry. There are projections that, globally, automotive’s share of the hides tanners process, currently between 15% and 18%, will increase to at least 25% by the end of this decade (Figure 2). One place in which this transition is already happening is Mexico. In 2014, an industry association in Mexico said that half of the 42,000 hides being processed in the country’s main leather production area, Guanajuato, formerly dominated by footwear, are now destined for automotive. Guanajuato processes around 85% of Mexico’s total.

Consensus is that demand for new cars will remain high, at least in the near term, which ought to be good news for companies helping supply leather for the interiors of at least some of these vehicles. Nevertheless, it’s important to point out that, in supply chain terms, this is a particularly complex and demanding eco-system, one in which the best operators can thrive, but which will prove extremely challenging for inefficient suppliers. Many car designers find leather to be an interesting material to work with and one that allows them to express their creativity more fully than, say, polyurethane or fabric.
Experts who mark up defects on the hide are the women and men with the margins in their hands.

Yield management is the key for all. Tanners say that this is where the margins are. The experts they employ to mark up defects on the hide, whether for a die-cutting or automated cutting process, are the women and men with the margins in their hands. They know how many defects are permissible for each section of the interior of each model their customers make. By the time a finished hide is ready to cut, their examination of it under strong light and with a little stretching to show up all defects may lead to questions over the grading colleagues have applied to the hide during the tanning process, which they are at liberty to voice. The fact that it can be difficult to find, hire and keep these skilled people lends weight to technology providers’ arguments that tanners will be better off investing in automation. If the technology can go at least some of the way towards making nesting (the process of choosing which piece will come from which part of the hide, arranged a different way each time for maximum yield) and yield management easier and more accurate, it must be a worthwhile investment.

Tanners acknowledge that it is they who have the expertise required to mark up the hides correctly. For this reason, the OEMs see the tannery as the most logical place for this marking up to take place and if tanners are going to use the expertise available among their workforce to mark the hide, they may as well cut the hides too. The arrangement seems to suit all supply chain partners; it’s important to remember that a minimum of 40% of the finished hide will not ship to the OEM or its tier-one supplier of seating systems and who better than the tanner to find a buyer or another use for that discarded leather?

**IMPORTANCE OF THE CUTTING PROCESS**

OEM pressures have led to many tanners introducing cutting services as part of their offering. A full set of cut leather pieces for a car interior can consist of around 150 parts (even the cover for the steering-wheel consists of four separate pieces of leather); it’s a complex operation that tanners want to get right to meet the requirements of their OEM customers. It seems in 2015 that the expectation that tanners will offer this value-added service is increasing; it is unlikely ever to be strategic for their profitability, but as a service for which there is keen demand, it adds value to the relationship between OEMs and the companies that supply them with leather. Tanners know the importance of adding value. As a rule of thumb they calculate that to take a raw hide to the wet blue stage is to add around 25% to the value of that material. Process it to the finished leather stage and you can add a further 75%-80% to the value (in some niche applications such as luxury automotive or aviation, that figure can be close to 100%). There is a consensus that adding a cutting operation is not a huge add-on to this, although tanners are taking up the task of running and improving cutting operations as a means of selling their leather. “When you cut, you come up against low-cost competitors,” tanners say, “some of whom cut at prices that are genuinely astonishing. There are locations where you cannot imagine operators investing in the necessary raw material, machinery and expert labour required to produce the highest-quality natural leather, but you can cut it anywhere.”
OEMs often specify the volume and quality of leather they need and choose the tanners they want to source it from, but they ask the tanner to send the finished leather or the cut parts to a specialist tier-one seat manufacturer rather than straight to the finished vehicle assembly plant. This adds an extra level of complexity to this part of the supply chain and extra tension. Among the tier-ones are companies that believe the responsibility for cutting should be theirs and they are quick to flag up any mistakes they think tanners have made in grading hides, identifying defects, managing yield and so on. If the tanner disagrees, the inevitable outcome is a dispute between the two; OEMs have frequently found themselves in the middle having to decide which of their suppliers is right. In 2014, one major tier-one, global operator Lear Corporation, reached even further upstream and acquired automotive tanning group Eagle Ottawa. It intends to produce and cut its own leather for the seats it makes in its own production network and supply these to OEMs around the world. It’s unlikely to be able to make enough leather on its own, and then there is the added complication of Eagle Ottawa being a supplier of leather and cut parts to other specialist tier-one seat manufacturers, so the newly expanded Lear is going to have to find ways of working effectively with competitors and rivals to meet OEMs’ needs. It’s a complex situation and ongoing disputes seem likely. Sympathetic though tanners are to OEMs’ desire for more data to help them adjudicate on specific disputes, they say there is a tendency for certain customers to take the usefulness of the data too far. “They want continuous improvement and for the benefits from that improvement to hit 100% of the business,” tanners say of the OEMs. “But there is only around 35% or 40% of the cost of the finished leather that we can have any control over. No matter how much continuous improvement we are able to achieve, there are large parts of the business that will remain unaffected.”

There are suspicions that OEMs may be making an unfair comparison between the production of leather and that of other materials they use in their vehicles, such as plastics or metal. There are defined process steps for producing plastic or metal and it’s possible to calculate the cycle time and the price of the product relatively easily. The process is open. Making leather, by contrast, involves around 50 production steps and each one has an impact on the quality of the finished leather. To ask tanners to reduce the number of steps is to invite them to relinquish responsibility for quality, which they refuse to do.

It’s hard for tanners to improve the whole of their businesses; they have control over only 35% or 40% of costs.

They want to continue to take responsibility for the quality of their finished leather but say all the processes are needed if they are to achieve the quality the OEMs require. “Cost efficiency is important,” tanners say, “but not if it is at the cost of producing a quality product.”

**REASONS TO SHIFT TO AUTOMATION**

The automotive market, like most consumer-facing sectors is subject to greater fluidity than ever in the second decade of the twenty-first century. Industry experts often quote Henry Ford’s offer that customers could have his cars in any colour they liked “as long as it’s black” as an illustration of how different things are today. After years of trying to simplify their supply chains, automotive OEMs now find that they have to run an increasingly global production footprint combined with an increasingly global sourcing network to stay competitive, making local adaptations to their offerings in all the major markets [see Figure 3 for BMW example]. None of them would dream of restricting their customers’ choices the way Mr Ford was happy to do.

In the face of this, tanners are likely to be able to adapt to changing customer needs more readily if they have a high level of automation at all stages of production, including cutting. This, at least, is one of the arguments put forward by technology providers. Options typically on view in cutting plants range from fully automated, fully digitised, computer-controlled cutting systems to more traditional machines that involve combinations of cutting tables, cutting dies and a press or rolling plate.

Recent examples of changes that tanners have been asked to keep up with include simple-sounding requests from consumers that the OEMs offer them a place in the car to keep iPhones, resulting in the whole of the car interior having to be redesigned.
There is flexibility and adaptability in technology that analyses each hide in real time and adjusts quickly to changing customer demands. Technology providers recognise that there is a high level of know-how among the senior members of cutting operations teams in tanneries, especially among the people who grade hides and mark up the defects. However, they argue that combining these skills with automated cutting systems is a way of optimising the know-how available on the cutting department floor. For some, automated systems can allow them to offer a service of not just cutting hides into parts or into complete kits and sets for car seats, door panels, steering-wheels and other parts of a car interior, but of being able to modify the pieces they cut much more readily and, consequently, claim a bigger market share. For others, it can be a simple question of being able to offer a cutting operation to their customers for the first time. In a similar way, the technology companies believe there are also tanners who have held back from buying the most expensive hides and upscaling the quality of their finished leather for fear of, perhaps, not being able to achieve high enough yields from the finished hides and making costly mistakes. New-generation cutting systems can give them confidence to work with higher-quality hides and go after higher-value market segments, including aftermarket sales.

Perhaps more obviously, to make maximum use of experienced leather professionals’ skills and to maximise the yield of each hide, which the technology can help tanning companies achieve, is a way of reducing waste. Reducing, hide by hide, the amount of finished leather that goes to waste is to offer major automotive tanners savings worth hundreds of thousands of euro each year.

Die-cutting remains an efficient method for many tanners and cutting plants at the moment and some prefer to stick with what they know best. Technology companies working to persuade tanners to invest in automation instead recognise a series of reasons for tanners’ reluctance to change.

Automated cutting systems have been on the market for around 20 years now, but technology companies acknowledge today that older-generation automated cutting tools often failed to live up to expectations; tanning companies, which are mostly family-owned and are still frequently family-run, have long memories and recall the disappointment early versions of the technology caused. Even so, the situation today is different, the technology providers argue. The technology has advanced, systems can do more and can do so with greater accuracy than before. Yes, you still have to learn the system, but once you’ve laid out the hide correctly, you can carry out most of the rest of the job using one tool only, a mouse. Another part of the argument is that focusing only on an advantage in productivity that die-cutting can offer is to look only at one aspect and ignore others, to take less than full account of the whole picture, the total cost of ownership of any system.
The price of advanced automated cutting technology is high, high enough to put some tanners off from investing, even though technology firms say return on investment can be around one year. Some automotive tanners run global networks of tanneries and cutting plants; to automate all cutting across their operations could leave them facing an investment in machines for a number of sites. It’s possible to argue that these groups could have taken this step years ago for a much lower level of investment, but it’s a moot point. And in groups this size, the process involved in securing board buy-in and a definitive go-ahead is often a slow one. Meanwhile, die-cutting processes are stable; tanners and cutting-room teams are comfortable with them. They understand that new technology offers more, but are not 100% sure they who are in the ‘real world’ will be able to turn the promises into permanent improvement.

Work is ongoing to allow tanners to see with their own eyes the savings and added value today’s technology can make possible. The focus is on finding within the tanning companies influential individuals who can see the possibilities and will sign up to become champions of change inside their organisations. There is a feeling in the technology provider community that the current situation in the automotive leather market is opening up new opportunities at least to initiate a conversation about new solutions. They talk about it as an educational process involving seminars, on-site workshops, proof-of-concept exercises and a strong support and information network, but insist that they have to drive it because to wait instead for tanners to knock on the doors of the technology companies would be to wait a long time.

Among the benefits they flag up is the technology’s ability to capture data about each and every hide (on yield, on costings, on traceability, quality of raw material, time to cut, suitability for particular OEMs and particular models and so on). OEMs want this data and, increasingly, expect to see it. Perhaps one day soon they will demand it as a condition for doing business with them. Tanners and other suppliers are already feeling this pressure. On the plus side, though, as mentioned above, data that the technology generates can also help tanners manage their businesses. Links to order management, enterprise resource planning and a wide range of back-office systems and analytical tools are smooth and clear, providing user companies with real-time information they can use to improve productivity and efficiency. It’s not just about having the data, but about what you do with it. Tanners can use it for continuous improvement and cost control inside their own companies, even if their sense is that OEMs have become “much more aggressive” about amassing, analysing and using this data to their own advantage in the last few years.

Henry Ford would not approve, but consumers are asking for more and more variation and customisation, particularly in the interior of cars. The list of options keeps growing. As everyone knows, the hide price has been consistently high for many months and, although OEMs have a keen interest in leather as a way of attracting and satisfying customers, they usually try to drive a very hard bargain. As a result, tanners addressing the automotive leather sector are under pressure. Cash-flow for many of them is tight and there is a clear perception that a good cutting operation is where they can win, or lose. Cut accurately and to the specifications of the OEMs or their tier-one suppliers while keeping yield high and waste low and they ought to be doing well. If the yield is too low or the volume of waste too high, they will put themselves under even more pressure. It is the perception among some technology providers that automotive tanners in Europe have been quicker to respond to this pressure than their counterparts in North America.

Tanners also face a situation in which the condition of raw hides when they reach the abattoir from the farm or feedlot or reach the beamhouse from the abattoir is worsening in many cases. Even hides from origins that have traditionally offered high quality are appearing now with more damage than before from insect bites because farmers and feedlot operators have elected to invest less in controlling insects or in washing cattle. Drought in places such as the south of the US has also been a factor in the declining quality of hides. It’s not clear whether or not this situation will help technology providers make the case for their automated cutting solutions.

On the one hand, software that can accurately take care of nesting ought to be of greater benefit if the defects a hide has. This is because the challenge of reaching the yield target (often an average of around 60%) will usually be easier for the software than for even the most expert human eye. The counter-argument to this, however, is that you would be aiming to achieve a return on your investment by making a small percentage gain on the yield of a lower-quality, lower-value hide.

Nor is it a straightforward question of investment in automated cutting coming exclusively from tanners in expensive locations working with expensive raw material. Providers of the technology also have customers in lower-cost economies.
Labour costs are lower than in Europe or the US, but that doesn’t always make it easy for operators to hire and keep enough people. Some have found that investing in up-to-date technology not only allows them to manage with a smaller workforce, but also increases their standing among their existing workers, who like the idea of working with cutting-edge machines, viewing it as an extra reason to be proud of where they work. There is a practical advantage too. Companies using die-cutting have calculated that an operator can lift the equivalent of 1,500 kilogrammes in the course of one day owing to the number of pieces of metal involved in the operation and the number of times they have to be lifted and laid down. Some technology providers have said it may come as a surprise that they sell more in Asia than in more established automotive production locations such as the US. Operators in Asia are hungry for success, enthusiastic about becoming players in this expanding market. They feel they are late to the party and are willing to make the necessary investment and the necessary changes to their organisations to make up for lost time.

At the same time, tanneries in more developed economies are usually still important sources of jobs in the communities in which they operate. The use of automated, digital cutting technology can help them attain and retain world-class status and this can help employer-employee relations in these parts of the world too. For tanneries in expensive locations to remain competitive, everyone who works there must play a part in helping these companies operate as efficiently as possible, with the highest possible levels of service. People are inclined to find their work more fulfilling if they feel part of a world-class organisation. Plus, there is a growing realisation among tanners in expensive countries that they are providing an important alternative to the service economy jobs that now constitute the largest proportion of employment opportunities there. Even the economies at the top of the league benefit from producing tangible but high-value products. Leather and the finished products it goes into, including motor cars, fall into this category.

Tanneries in general are often full of up-to-date technology these days, with automation becoming more and more common, especially in production areas such as loading chemicals and shifting heavy hides as they move across the tannery floor (to the extent that it seems in some facilities that a hide can go from start to finished without being touched). Tanneries with important automotive customers have an extra incentive, perhaps, in that the automotive industry has always been more open than most to technological innovation and OEMs tend to look enthusiastically on technology adoption among their suppliers too. The twenty-first century is the digital century, this argument continues, and to turn to digital cutting tools is to move with the times. Their digital nature brings the added bonus of the technology providers who produce them being able to monitor their condition remotely and intervene when required to prevent a more serious technical fault developing, saving downtime, saving money, possibly preventing a big fine from an OEM if a late shipment of leather or cut parts holds things up further downstream in the supply chain.

**CHANGE MANAGEMENT AS A KEY TO SUCCESS**

Putting an automated cutting system in place, like all major technology implementations, would represent major change. Changes to the organisation and to its processes and workflows can be daunting for tanners contemplating a move to greater automation, which requires what one technology expert describes as “a whole new logic”. The general view of the technology providers is that this is a necessary, if sometimes painful exercise. They admit that, historically, they too underestimated the level of organisational change required to make innovation projects like these successful. Lean thinking is popular, but to transform the thinking into lean practices, with a genuine commitment to continuous improvement, is hard work. Technology companies insist that they can offer not just the tools, but also some degree of the expertise required to make that transition.

The most important point to bear in mind, they say, is that other producers have been down the same road already, with the best surviving and thriving and some of those who could not put the necessary changes to culture and operations into effect having to cease trading. Until around 2012, the fabric upholstery supply chain also included a large number of traditional producers who were also resistant to change and reluctant to alter their operations to work in new ways around new technology; what they wanted was to turn the new machines on and instantly start saving money. In the last three years, observers of this market have seen a shift: companies that have remained competitive have had no choice but to change the way they work and, in doing so, allow the new technology to help them make a big enough difference to their levels of responsiveness and of productivity to remain in the market.
They have received real help from technology providers too. One recent project in Mexico involved a prominent supplier of textile-based seating systems to Nissan. The technology provider’s professional services team encountered a fairly high level of resistance when it first requested an opportunity to present a new cutting solution, with the lack of trust stemming from dissatisfaction with the company’s use of four older machines. In time, the seat company opened its doors and said the cutting experts could have two days to observe its practices and make suggestions.

The main focus was a plant that had been running for four years, using a die-cutting operation. The manufacturer wanted greater efficiency there and decided to invest in an automated cutting machine provided the technology provider could show that the return on investment would be impressive enough. To make sure the company could achieve the return on investment it required, the professional services team spent time with the operators on the factory floor, running workshops and hands-on training sessions to help workers build up their knowledge of the new technology and their ability to make full use of it. These efforts began to bear fruit quickly and the company noticed that the space between cut parts reduced from between six and eight millimetres on average to between four and six millimetres. And because, even with textiles, the cost of the upholstery material represents more than half of the total cost of the seat, this reduction in the space between cut parts meant a substantial cost-saving.

Soon afterwards, the same company opened an additional plant in the same part of Mexico and, with trust levels much higher than before, invited the technology provider and its professional services team to be part of the new project from the outset. “They treated us as part of the family,” says one person who took part in the project. Quicker response times, higher levels of traceability and all-round improved service are successful textile-focused companies’ means of continuing to have an edge. It has ceased to be a question of cost for them and has become, instead, a question of survival.

To link this to the leather industry is not to say leather and fabric work in car interiors in exactly the same way, but the parallels are clear. Companies that innovate by investing in new technology and change management can achieve important advancements in efficiency and effectiveness, respond well to the demands of customers and make their positions in the value chain more secure.

**OEMs tend to look enthusiastically on technology adoption among their suppliers.**

Forward-looking and innovative companies stand a greater chance of success in this demanding market than those who rest on past laurels, stand still and allow competitors to steal a march on them.

To extend the same arguments to leather is to say that tanners need to move now to make themselves ready today for what will inevitably come tomorrow.

Demand for automotive leather is certainly strong, but this is a market in which this extra demand brings with it a responsibility to deliver not just extra leather, but also added responsiveness, variation and accuracy. Intense competition in this market also means that successful tanners will have to be as efficient as possible, managing yield with care and skill to preserve margins. Technology providers insist that their automated cutting solutions seek not to replace the expertise that people working in tanneries and cutting plants have to offer, but to complement their knowledge and to allow them to use it to maximum effect. Fully computerised cutting systems will also provide an effective means of capturing and sharing with customers data connected to raw material and leather traceability, as well as to yield, costings, time to cut and other details. The automotive market demands continuous improvement and investment in innovation and in the organisational change that often goes hand in hand with new technology can help tanners achieve that aim.
ABOUT LECTRA

Lectra is the world leader in integrated technology solutions that automate, streamline and accelerate product design, development and manufacturing processes for industries using soft materials. Lectra develops the most advanced specialized software and cutting systems and provides associated services to a broad array of markets including fashion (apparel, accessories, footwear), automotive (car seats and interiors, airbags), furniture, as well as a wide variety of other market sectors, such as aeronautical and marine industries, wind power and personal protective equipment. Lectra serves 23,000 customers in more than 100 countries with 1,500 employees. The company is listed on Euronext.

For more information, please visit www.lectra.com